If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60x^2-40x=175
We move all terms to the left:
60x^2-40x-(175)=0
a = 60; b = -40; c = -175;
Δ = b2-4ac
Δ = -402-4·60·(-175)
Δ = 43600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{43600}=\sqrt{400*109}=\sqrt{400}*\sqrt{109}=20\sqrt{109}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-20\sqrt{109}}{2*60}=\frac{40-20\sqrt{109}}{120} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+20\sqrt{109}}{2*60}=\frac{40+20\sqrt{109}}{120} $
| 10a-22=-8 | | 5x+40+x+25=180 | | 0.6(3x+2)=1.2 | | 4(x+3)+3=4x+5 | | 2x-5/7+x+7/8=-6 | | (f+6)/6=1 | | 7y-9=15y-9 | | x/2=45-x | | 8(6–2x)=12x+6 | | (n+2)(n-7)=0 | | (3x)-5)(2x)=90 | | z.9=27/z | | 6-7(m-3)=7 | | 9=y/5+1 | | 8+3x=-x-16 | | 8=13+x/2 | | 4+4(x-1)=28-(x-7x)+1 | | 2x-3/8+x=2x+3/2+5 | | 2x+3(x+5)=180 | | 3/14x=7/20 | | x/7-20=-18 | | -2=p1 | | (2x+27)+(x-9)=180 | | 3(4+x)=5(10+x | | 197000+x*0.03+x=15210 | | 2^x=51 | | 4y-1=2y-1=5y | | -5u+3(u+7)=13 | | -3(2x-5)-(7-4x)=40 | | -13-9x=14 | | m-6=-113 | | -3r-23=-13-5r |